Is Structure Dependence Shaped for Efficient Communication?: A Case Study on Coordination

> Kohei Kajikawa ^{1,2} Yusuke Kubota ² Yohei Oseki ¹ ¹The University of Tokyo ²NINJAL

> > CoNLL 2024@Miami

kohei-kajikawa@g.ecc.u-tokyo.ac.jp

November 15th, 2024

Kajikawa, Kubota, and Oseki

Is Structure Dependence Shaped for Efficient Communication?

Nov. 15, 2024@CoNLL 1 / 13

Why do universal properties exist in natural languages?

- Why do universal properties exist in natural languages?
- One hypothesis: Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].

- Why do universal properties exist in natural languages?
- One hypothesis: Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].
 - The amount of information conveyed is maximized (*informative*) while the effort for usage is minimized (*simple*).
 - optimized under simplicity/informativeness trade-off.

- Why do universal properties exist in natural languages?
- One hypothesis: Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].
 - The amount of information conveyed is maximized (*informative*) while the effort for usage is minimized (*simple*).
 - optimized under simplicity/informativeness trade-off.
- To what extent can the hypothesis explain universals?

- Why do universal properties exist in natural languages?
- One hypothesis: Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].
 - The amount of information conveyed is maximized (*informative*) while the effort for usage is minimized (*simple*).
 - optimized under simplicity/informativeness trade-off.
- ▶ To what extent can the hypothesis explain universals?
 - Lexical level [i.a., KR12; PTG12; Zas+18; Mol+21; Ste21]

- Why do universal properties exist in natural languages?
- One hypothesis:
 - Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].
 - The amount of information conveyed is maximized (*informative*) while the effort for usage is minimized (*simple*).
 - optimized under simplicity/informativeness trade-off.
 - To what extent can the hypothesis explain universals?
 - Lexical level [i.a., KR12; PTG12; Zas+18; Mol+21; Ste21]
 - Syntactic level
 - Compositionality [Kir+15]
 - (Several) Greenbergian Word Order Universals [HJF20]

- Why do universal properties exist in natural languages?
- One hypothesis:

Universals are shaped for *efficient communication* [JT11; KXR18; Gib+19].

- The amount of information conveyed is maximized (*informative*) while the effort for usage is minimized (*simple*).
- optimized under simplicity/informativeness trade-off.
- To what extent can the hypothesis explain universals?
 - Lexical level [i.a., KR12; PTG12; Zas+18; Mol+21; Ste21]
 - Syntactic level
 - Compositionality [Kir+15]
 - (Several) Greenbergian Word Order Universals [HJF20]
 - ► Structure Dependence? (← this work)

Structure Dependence

- Grammatical operations are applied **structurally** rather than linearly.
- In English yes-no questions,

good rule moves the auxiliary of the *main clause* to the front (structural) **bad rule** moves the *leftmost* auxiliary to the front (linear)

Structure Dependence

- Coordinate structures are constructed through a structure-dependent reduction operation, conjunction reduction [Cho57; Cho55; Ros67].
 - Which words are reduced is determined by their structural position.

Experiment: Design of 3 types of languages

1. No-reduction lg:

- Mary called John and Mary praised John.
- 2. Structure-reduction lg:
 - Mary called __ and __ praised John.
- 3. Linear-reduction lg:
 - Mary called John and __ praised __.

Experiment: Design of 3 types of languages

1. No-reduction lg:

- Mary called John and Mary praised John.
- 2. Structure-reduction lg:
 - Mary called __ and __ praised John.
- 3. Linear-reduction lg:
 - Mary called John and __ praised __.
- Create the corpora of them using [WC21]'s toy PCFGs.

Estimating Communicative Efficiency

Following [HJF20], we defined simplicity and informativeness as predictability and parsability, respectively.

predictability :=
$$-H(\mathcal{U}) = \sum_{u \in \mathcal{U}} p(u) \log p(u)$$
 (1)

parsability :=
$$-H(\mathcal{T}|\mathcal{U}) = \sum_{t \in \mathcal{T}, u \in \mathcal{U}} p(t, u) \log p(t|u)$$
 (2)

communicative efficiency := λ predictability + $(1 - \lambda)$ parsability ($\lambda \in [0, 1]$) (3)

- Predictability is approximated with mean negative word-by-word surprisal.
 - represents the ease of processing on average under surprisal theory [Hal01; Lev08].
- Parsability is approximated with mean word-by-word logLik of parse.
 - captures how unambiguously the underlying syntactic structure can be reconstructed.

Estimating Communicative Efficiency

Following [HJF20], we defined simplicity and informativeness as predictability and parsability, respectively.

predictability :=
$$-H(\mathcal{U}) = \sum_{u \in \mathcal{U}} p(u) \log p(u)$$
 (1)

parsability :=
$$-H(\mathcal{T}|\mathcal{U}) = \sum_{t \in \mathcal{T}, u \in \mathcal{U}} p(t, u) \log p(t|u)$$
 (2)

communicative efficiency := λ predictability + $(1 - \lambda)$ parsability ($\lambda \in [0, 1]$) (3)

- Predictability is approximated with mean negative word-by-word surprisal.
 - represents the ease of processing on average under surprisal theory [Hal01; Lev08].
- Parsability is approximated with mean word-by-word logLik of parse.
 - captures how unambiguously the underlying syntactic structure can be reconstructed.

calculated them with Reccurent Neural Network Grammars (RNNGs; [Dye+16]).

Results

▶ The structure-reduction lgs are the most communicatively efficient under the parameter $\lambda \in [0.18, 0.93]$ for 95% Cl.

Kajikawa, Kubota, and Oseki

Is Structure Dependence Shaped for Efficient Communication?

When considering only predictability (simplicity), the no-reduction lgs take the best score.

No-reduction lg is the simplest for local string patterns, which makes prediction easier.

Kajikawa, Kubota, and Oseki

When considering only parsability (informativeness), the linear-reduction lgs take the best.

Linear-reduction lg has shorter overall expressions, resulting in fewer possible parses at each word position.

Kajikawa, Kubota, and Oseki

Is Structure Dependence Shaped for Efficient Communication?

Balancing the trade-off between the two, a structure-dependent reduction is the most preferred design for maximizing communicative efficiency.

Kajikawa, Kubota, and Oseki

Implications for Theoretical Linguistics

A prominent view in the mainstream generative grammar:

- natural language involves domain-specific predispositions and syntactic properties of language—including structure dependence—are best explained from the perspective of 'efficient computation' [HCF02; Cho05; Eve+15; BC16].
- communication is considered an epiphenomenon [Cho02; HCF02].

Implications for Theoretical Linguistics

A prominent view in the mainstream generative grammar:

- natural language involves domain-specific predispositions and syntactic properties of language—including structure dependence—are best explained from the perspective of 'efficient computation' [HCF02; Cho05; Eve+15; BC16].
- communication is considered an epiphenomenon [Cho02; HCF02].
- Our results suggest that at least some structure-dependent properties present in natural language (such as coordination) can be explained from the perspective of domain-general efficient communication.
 - This aligns with the existing body of efficient communication research [Gib+19; FPG24].

Conclusion

- We investigated whether structure dependence reflects the optimization for efficient communication.
 - focusing on coordinate structures.
- The experiment results suggest that the structure-dependent properties can be reduced to the functional perspective of efficient communication.

Thank you!

Title: Is Structure Dependence Shaped for Efficient Communication?: A Case Study on Coordination Authors: Kohei Kajikawa, Yusuke Kubota, and Yohei Oseki

Link to Paper

Kajikawa, Kubota, and Oseki

Is Structure Dependence Shaped for Efficient Communication?

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 21K00541 and 24H00087, JST PRESTO Grant Number JPMJPR21C2, and the NINJAL collaborative research project 'Toward a Computationally-Informed Theoretical Linguistics'.

- [BC16] Robert C. Berwick and Noam Chomsky. Why Only Us: Language and Evolution. Cambridge, MA: The MIT Press, 2016. URL: https://mitpress.mit.edu/9780262533492/why-only-us/.
- [Cho02] Noam Chomsky. "An interview on minimalism". In: On Nature and Language. Ed. by Adriana Belletti and Luigi Rizzi. Cambridge University Press, 2002, pp. 92–161. DOI: 10.1017/CB09780511613876.005.
- [Cho05] Noam Chomsky. "Three Factors in Language Design". In: *Linguistic Inquiry* 36.1 (Jan. 2005), pp. 1–22. ISSN: 0024-3892. DOI: 10.1162/0024389052993655.
- [Cho55] Noam Chomsky. The Logical Structure of Linguistic Theory. Springer New York, NY, 1975 (=1955). URL: https://link.springer.com/book/9780306307607.
- [Cho57] Noam Chomsky. Syntactic Structures. Mouton, 1957. DOI: 10.1515/9783112316009.
- [Dye+16] Chris Dyer et al. "Recurrent Neural Network Grammars". In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California: Association for Computational Linguistics, June 2016, pp. 199–209. DOI: 10.18653/v1/N16-1024.
- [Eve+15]
- Martin B.H. Everaert et al. "Structures, Not Strings: Linguistics as Part of the Cognitive Sciences". In: *Trends in Cognitive Sciences* 19 (12 2015), pp. 729–743. DOI:

10.1016/j.tics.2015.09.008. Kajikawa, Kubota, and Oseki Is Structure Dependen

Is Structure Dependence Shaped for Efficient Communication?

- [FPG24] Evelina Fedorenko, Steven T. Piantadosi, and Edward A. F. Gibson. "Language is primarily a tool for communication rather than thought". In: *Nature* 630 (8017 2024), pp. 575–586. DOI: 10.1038/s41586-024-07522-w.
- [Gib+19] Edward Gibson et al. "How Efficiency Shapes Human Language". In: Trends in Cognitive Sciences 23.5 (2019), pp. 389–407. ISSN: 1364-6613. DOI: 10.1016/j.tics.2019.02.003.
- [Hal01] John Hale. "A Probabilistic Earley Parser as a Psycholinguistic Model". In: Second Meeting of the North American Chapter of the Association for Computational Linguistics. 2001. URL: https://aclanthology.org/N01-1021.
- [HCF02] Marc D. Hauser, Noam Chomsky, and W. Tecumseh Fitch. "The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?" In: Science 298.5598 (2002), pp. 1569–1579. DOI: 10.1126/science.298.5598.1569.
- [HJF20] Michael Hahn, Dan Jurafsky, and Richard Futrell. "Universals of word order reflect optimization of grammars for efficient communication". In: *Proceedings of the National Academy of Sciences* 117.5 (2020), pp. 2347–2353. DOI: 10.1073/pnas.1910923117.
- [JT11] T. Florian Jaeger and Harry Tily. "On language utility: processing complexity and communicative efficiency". In: WIREs Cognitive Science 2.3 (2011), pp. 323–335. DOI: 10.1002/wcs.126.

Kajikawa, Kubota, and Oseki

Is Structure Dependence Shaped for Efficient Communication?

- [Kir+15] Simon Kirby et al. "Compression and communication in the cultural evolution of linguistic structure". In: Cognition 141 (2015), pp. 87–102. ISSN: 0010-0277. DOI: 10.1016/j.cognition.2015.03.016.
- [KR12] Charles Kemp and Terry Regier. "Kinship Categories Across Languages Reflect General Communicative Principles". In: Science 336.6084 (2012), pp. 1049–1054. DOI: 10.1126/science.1218811.
- [KXR18] Charles Kemp, Yang Xu, and Terry Regier. "Semantic Typology and Efficient Communication". In: Annual Review of Linguistics 4.1 (2018), pp. 109–128. DOI: 10.1146/annurev-linguistics-011817-045406.
- [Lev08] Roger Levy. "Expectation-based syntactic comprehension". In: *Cognition* 106.3 (2008), pp. 1126–1177. ISSN: 0010–0277. DOI: 10.1016/j.cognition.2007.05.006.
- [Mol+21] Francis Mollica et al. "The forms and meanings of grammatical markers support efficient communication". In: Proceedings of the National Academy of Sciences 118.49 (2021), e2025993118. DOI: 10.1073/pnas.2025993118.
- [PTG12] Steven T. Piantadosi, Harry Tily, and Edward Gibson. "The communicative function of ambiguity in language". In: Cognition 122.3 (2012), pp. 280-291. ISSN: 0010-0277. DOI: https://doi.org/10.1016/j.cognition.2011.10.004. URL: https://www.sciencedirect.com/science/article/pii/S0010027711002496.

Kajikawa, Kubota, and Oseki

- [Ros67] John R. Ross. "Constraints on variables in syntax". PhD thesis. MIT, 1967.
- [Ste21] Shane Steinert-Threlkeld. "Quantifiers in Natural Language: Efficient Communication and Degrees of Semantic Universals". In: *Entropy* 23.10 (2021). ISSN: 1099-4300. DOI: 10.3390/e23101335.
- [WC21] Jennifer C. White and Ryan Cotterell. "Examining the Inductive Bias of Neural Language Models with Artificial Languages". In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Ed. by Chengqing Zong et al. Online: Association for Computational Linguistics, Aug. 2021, pp. 454–463. DOI: 10.18653/v1/2021.acl-long.38.
- [Zas+18] Noga Zaslavsky et al. "Efficient compression in color naming and its evolution". In: Proceedings of the National Academy of Sciences 115.31 (2018), pp. 7937–7942. DOI: 10.1073/pnas.1800521115.